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An analysis of the compatability of ellipsometry conventions with the 

Mueller-Stokes calculus has shown that for the two approaches to be consist~ 

ent, modifications to the 1968 Nebraska ellipsometry conventions are neces~ 

sary. A sign convention is proposed which specifies the ellipticity angle and 

the fourth Stokes parameter to be positive when the tip of the instantaneous 

electric-field vector describes a right~handed helix in space. Polarization of 

this type will be designa"ted as right-handed and represented by a point on the · 

northern half of the Poincare sphere. The consequences of using this conven-

. l · h h · - d d i(wt+IJ) · f h 1 -twn, a ong w1t t e prevwusly a opte e conventwn or t e e ectnc 

field, are seen in the relationships among several representations of polariza~ 

tion state. These include the magnitudes and phases of the electric~field 

components, the Jones vector, coherency matrix, Stokes parameters, Poincare 

sphere, polarization ratio, ellipsometric parameters o/ and and the azimuth 

and ellipticity of the polarization ellipse. The formalism for converting the 

Jones matrix into the matrix that transforms the coherency vector or the 

Stokes vector (Mueller matrix) is described. Mueller matrices for a linear 

retarder and an isotropic reflecting surface and the description of a 

compensator-analyzer polarimeter are given. 





1. Introduction 

A convention for absolute phase of the electric-field vector wave has been established by 

adopting the ei(wt+IJ) time /phase dependence [1,2] . However, unambiguous and comprehen­

sive sign conventions have not been adopted for parameters affected by the phase difference of 

orthogonal components of the electric field. In ellipsometry, the ellipticity angle and the 

fourth Stokes parameter carry the sign of the phase difference. The growing use of the 

Mueller-Stokes calculus with photometric ellipsometry makes it increasingly desirable to adopt 

an unambiguous designation for phase differences. 

Born and Wolf [3] note that it is traditional to call polarization right- (left-) handed when 

an observer looking into the source would see the polarization ellipse described in a clockwise 

(counterclockwise) sense. As pointed out by Clarke [4], this is equivalent to calling the 

polarization right- (left-) handed when the helix described by the instantaneous locus of the tip 

of the electric-field vector in space is right- (left-) handed. 

Opposite names are obtained, however, from the convention in which the fingers of the 

appropriate hand curl in the direction of the trace of the ellipse while the thumb points in the 

direction of propagation. Thus, when applied to the handedness of polarization state, the 

terms "right" or "left" can have ail uncertain interpretation. 

Since the ellipticity angle and the fourth Stokes parameter change their sign with changes 

in handedness, one must also associate the terms "positive" and "negative" with the two types 

of polarization. Unfortunately, the literature in the fields of optics, astronomy and radio 

polarimetry contains examples of all four combinations of terms for each type o~ polarization 

[ 4 ]. 

A further point of disagreement among authors is the relation of handedness to the 

Poincare sphere. The north pole of the sphere variously represents right [3] or left [5,6] 

circular polarization, and the positive direction for the fourth Stokes parameter is variously to 

the north [3 ,7 ,8] or south [5]. Finally, the direction of increasing azimuth on the sphere is 

variously to the west [5,9] or east [3,6,7]. 

We propose in this paper a convention that specifies the signs of the ellipticity anglt>. and 

the fourth Stokes parameter to be positive whenever the instantaneous electric-field vector 

describes a right-handed helix in space. The ellipse of this type of polarization is described in 

a clockwise sense when' viewed by a observer looking into the source. We further propose that 



polarization of this type be designated as right~handed, and represented by a point in the 

northern half of the Poincare sphere. 

The adoption of a sign convention affects the relationships among the various representa­

tions of polarization state: the magnitudes and phases of orthogonal electric~field components, 

the Jones vector, coherency matrix, Stokes parameters, Poincare sphere, polarization ratio, 

ellipsometric parameters and the azimuth and ellipticity of the polarization ellipse. The 

relationships appropriate for the proposed sign convention are all given in appendices at the 

end of the paper. 

Also given are the transformation matrices for the coherency vector and Stokes vector 

(Mueller matrix) derived from the corresponding Jones matrix, using the proposed convention. 

Examples of Mueller matrices for a linear retarder and an isotropic reflecting surface as well as 

the Mueller-Stokes description of a compensator-analyzer polarimeter are included. 

These conventions differ from previous conventions principally in the ellipticity angle e 

and in the Poincare sphere. Ellipticity differs by defining e to be positive for right-handed 

polarization, while the north pole on the Poincare sphere represents right-handed, rather than 

left~handed polarization, to be consistent with the fourth Stokes parameter. These differences, 

discussed in §4, are required to establish consistency with conventions used for the Mue!ler:­

Stokes calculus, without requiring major changes to the calculus. 



2. 

Previously adopted definitions for the electric field, Jones vector, coherency matrix, 

polarization ratio, and ellipsometric parameters 1/1 and ;l are given for reference in this section. 

2.1 Electric field 

According to the Muller-Nebraska convention [ 1 ,2] the Cartesian components of the 

electric field are written using the ei(wt+O) time/phase dependence as 

(2.1) 

(2.2) 

2.2 Jones vector 

The Jones vector is a concise representation of a totally polarized (quasi- )monochromatic 

wave. It is defined as the vector of complex electric-field components with the explicit time 

and space dependence removed. The positive phase dependence is retained. 

(2.3) 

E xO• E yO• fix and fiy may have a stochastic time dependence about an average value, as in 

the case of quasi-monochromatic or partially polarized light. Time-averaged values, denoted 

by ( ) , are then used. 

2.3 Coherency matrix 

The coherency matrix gives the correlation of the field components with themselves and 

each other. It is capable of representing partially polarized waves. It is defined [3] as the 

direct product of the Jones vector with its Hermetian adjoint. 

J = X (2.4) 

Using the phase convention of eq. (2.3), the elements of this matrix are given by 



(2.5) 

(2.6) 

(2.7) 

(2.8) 

It is easily seen that when the alternative e ~i(wt+lJ) convention is used, the coherency 

matrix is transposed: If 

(2.9) 

then 

E' "" (2.10) 

and 

(2.11) 

Equations (2.10) and (2.11) are also obtained with the ei(wt-lJ) convention. It is necessary 

that the convention of eq. (2.3) be consistently followed to avoid conflicts in relating the 

coherency matrix to other polarization parameters. Because of the close relationship of the 

elements of the coherency matrix to the Stokes parameters, we make special note of this point. 

2.4 Complex polarization ratio 

The complex ratio of the elements of the Jones vector suppresses the absolute amplitude 

and phase information of the wave, leaving only a description of polarization state. Although 

both the x-to-y [10,11] and y-to-x [3,9] ratios are found in the literature, the latter appears 

more frequently and is adopted here. Following the notation of Azzam and Bashara [9], we 

write 

(2.12) 



It is sometimes convenient to express this ratio in trigonometric form by using the angles 

a and 8 in the relation 

io x = tan a e , 

2.5 Ellipsometric parameters 

(2.13) 

The parameters If; and 6 describe the interaction of polarized light with an optical system. 

Explicitly, we have [1] 

(2.14) 

for the case of oblique reflection from an isotropic surface having the reflection coefficients RP 

and R5 for the p and s components. If we postulate linearly polarized incident light having an 

azimuth of 45 ", then X inc = 1, and the polarization state of the reflected light is given by 

-i/:;, 
Xref ""' cot If; e . (2.15) 

Thus, with the assumption that X inc = 1, If; and IJ. provide an unambiguous description of the 

reflected polarization state. 
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3. 

In this section, we define handedness independently of mathematical convention, accord­

ing to the instantaneous helix of the electric field and the rotation of the field vector in a 

transverse plane. From the established time and phase convention, the condition for right­

handedness is stated in terms of the component phase difference. The same condition is then 

expressed in terms of the coherency matrix, polarization ratio and ellipsometric parameter i.l. 

Finally we propose choices for the signs of ellipticity angle and the fourth Stokes parameter as 

well as the hemisphere of the Poincare sphere which is to represent right-handed polarization. 

Some of the more important relationships are then given; a complete listing is in the appendic­

es. 

3.1 Definition of right-handed polarization 

We follow the traditional (helix) convention for naming handedness: when the instantane­

ous electric field forms a right-handed helix in space, so that its point of intersection with a 

transverse plane rotates in a clockwise sense to an observer facing the source, we call the 

polarization right-handed [3]. This convention, almost universally followed in the field of 

optics, is illustrated in fig. 1. 

If we consider the transverse plane at z = 0, eqs. (2.1) and (2.2) describe the electric 

field components as 

Ex(t) = Exo cos (wt + 8x), (3.1) 

(3.2) 

The condition for clockwise rotation, and thus for right-handed polarization, is [3] 

(3.3) 

From eq. (2.7), a state of polarization represented by the coherency matrix J is right-handed 

when 

(3.4) 

In terms of the polarization ratio x, eqs. (2.12) and (2.13) give the condition for right­

handedness as 

(3.5) 



Thus, right®handed polarization states lie in the upper half of the complex polarization plane. 

Finally, eqs. (2.15) and (3.5) combine to the condition for right-handedness in terms of 

ellipsometric A: 

sin A < 0. (3.6) 

(3.6) states that when light, linearly at 45° (or any azimuth 8 such that 

tan 9 > 0), is obliquely incident on the bare surface of an absorbing material 

(0° < A < 180°), the reflected light has left-handed polarization. 

3.2 Choice of sign for ellipticity 

The azimuth of a light wave is simply the angular position of the ellipse's major 

axis measured from a reference orientation in a counterclockwise direction for an observer 

looking into the source. The reference orientation is taken as the plane of incidence or 

scattering, the horizontal position, or the x axis. We use the symbol 8 to denote azimuth. 

Ellipticity is defined as the angle E: whose tangent has magnitude equal to the ratio of the 

minor to major axis (axial ratio) of the ellipse, and whose sign indicates the 

handedness. fig. 2. 

We propose the convention which makes the ellipticity positive when the polarization 

is right-handed. That is, for right-handed 

0 < E: s 45°. (3.7) 

Using this convention, the Jones vector of the wave is given by [9] 

[ 
cos e: ] i<J> [ cos 9 cos e - i sin 8 sin e ] 

-8) ""A e · , 
i sin € sin e cos € + i cos e sin € 

(3.8): 

where R is the Cartesian coordinate rotation 

overall phase of the wave. 

A is the overall amplitude and q, is the 

3.3 Choice of sign for fourth Stokes parameter 

The four real quantities known as the Stokes parameters provide a useful description of 

polarization state in terms of measurable intensities. They may be defined phenomenologically 

in terms of intensities measured with the use of ideal polarization filters which transmit linear 

polarizations with azimuths of 0 °, 45 °, 90 °, and 13 5°, as well as right- and left-handed 

circular polarizations [3,5]. To be consistent with our choice of sign for ellipticity, we choose 

the convention which makes 



>0 (3.9) 

for right~handed polarization. The defining equations for the Stokes parameters thus take the 

form [5,7-9,12-16] 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

Combining eqs. (2.3), (3.8) and (3.10)-(3.13) gives the relation of the Stokes parameters of 

totally polarized light to the azimuth and ellipticity: 

(3.14) 

"" S 0 cos 2E sin 28, (3.15) 

(3.16) 

From eqs. (2.4 )-(2.8) we obtain the relationship between the Stokes parameters as we have 

defined them and the coherency matrix: 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

The use of different time and phase conventions for the electric field or inconsistent use 

of the present convention leads to the opposite sign in eq. (3.20), even when positive values of 

S3 indicate right-handedness [3,9,15,17-21]. Consistent use of the present convention leads 

to eq. (3.20), however [12,14,22-24]. The relationship between the Stokes parameters and the 

coherency matrix appears in matrix form in appendices A4 and AS. 



3.4 Choice of hemisphere on Poincare sphere 

A state of polarization described by the azimuth and ellipticity angles ( fJ, e: ) is represented 

on the Poincare sphere by a point having longitude equal to 29 and latitude equal to 2 e:. The 

Cartesian coordinates of a point on the sphere are simply the Stokes parameters of the 

corresponding polarization state. We make the natural choice of having north latitudes specify 

positive values of S3 and e:, and therefore represent right-handed polarization states. Accord­

ing to eqs. (3.14) and (3.15), longitude (azimuth) is taken to be zero for the meridian defined 

by S 2 ""' 0 and S 1 > 0. In order for S 1, S 2, and S3 to form a right-handed system of coordi­

nates, the positive direction for S2 is taken to be east of S1. These conventions are illustrated 

in fig. 3. 

Certain points on the Poincare sphere are frequently labeled H and V (where the positive 

and negative S 1 axes intersect with the equator) and R and L (at the two poles) to denote 

respectively horizontal and vertical linear polarization and right- and left-handed circular 

polarization. From the choices made above, the labels R and L appear respectively at the 

north and south poles. H and V do not always convey useful ellipsometric information, since 

the reference axis is not always horizontaL Depending on the orientation of the system being 

measured, the plane of incidence or scattering (reference azimuth) may have arbitrary 

orientation. The traditional symbols (H, V) may thus be considered to be interchangeable 

with any of the symbol pairs (p, s), (x, y), (II ,.l.), (TM, TE), (0, 90), (l, r) or ('IT, a) to 

indicate transverse directions which are respectively parallel and perpendicular to the plane of 

incidence or scattering. 

The ellipsometric parameters (t/1, il) as well as the auxiliary angles (a, o) are related to 

the Poincare sphere as shown in fig. 4. The inclination of the plane defined by the S1 axis and 

the point P on the sphere relative to the equatorial plane is the component phase difference 

8 = o1~8x. The ellipsometric phase angle il is simply 360°-o [see eqs. (2.13) and (2.15)] and 

gives the inclination measured in the opposite direction. The angles 2o: and 21j! {both positive) 

give the inclination of point P to the S 1 axis, measured from opposite sides of the origin. 

Points on the unit-radius Poincare sphere are uniquely related to values of x in the 

complex plane by means of a stereographic projection [3,9]. The projection which relates the 

sphere and plane as we have defined them makes the center of the sphere coincide with the 

origin of the plane [24]. The radius of the sphere is normalized to the value of s0 . The 

positive real and imaginary axes coincide with the positive S2 and S 3 axes respectively. The 

projection is made from the point of intersection of the negative S 1 axis with the equator. The 
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of the real and axes of the plane onto the equator and lines of 

0° and 180° longitude of the sphere are shown in fig. 5. 

3.5 Summary 

The results of this section are summarized in the following statements, which are all true 

for right-handed polarization. 

* By definition: 

1) The helix is right-handed. 

2) The electric-field vector rotates clockwise. 

the Muller-Nebraska time and phase convention [ 1,2]: 

3) sin (oy~8x) > 0. 

4) Im (Jyx) > 0. 

5) Im (x) > 0. 

6) sin ~ < 0. 

" By proposed convention: 

7) sin 2<:: > 0. 

8) > 0. 

9) The point is in the northern hemisphere. 



We consider here the alternate sign convention for e and S3, namely that they be taken to 

be positive for left-handed polarization. Equations (3.8), (3.13) and (3.20) would then read 

E = A e It/> R (-8) = A e "' , 
. [ cos € ] i"-r cos () cos € + i sin (J sin E: ] 

- i sin € l sin a cos € - i cos 8 sin € 
(4.1) 

(4.2) 

and 

(4.3) 

while eq. (3.16) would remain unchanged: 

(4.4) 

North latitude on the Poincare sphere, while again corresponding to positive values of S3 and 

E, would now represent left-handed polarization states. This convention has been used by 

Muller in a discussion of coordinate system conventions [1] and in a review of photometric 

ellipsometers [6], and is illustrated in fig. 6. 

This convention has the advantage of giving sin ( 8x -8
1

), sin 2 E:, S3 and sin Ll all the 

same sign. Moreover, positive ellipticity would correspond to an increase with time of the 

azimuth of the electric-field vector, an aesthetically pleasing choice. Finally, the polarization 

ratio could be redefined as x = Exl E
1

, making the angles (a,ll) identical.to (1/;,Ll) and relating 

the parameters x and p in a more natural manner: Xref = PXinc· 

The choice between the conventions is thus not a clear-cut decision. Ellipsometric usage 

tends to make E y(s) the reference component by defining p = R / R s• while the common 

definition of the Stokes parameters [eqs. (3.10)-(3.13)] makes Ex(p) the reference component. 

Thus, when the Mueller-Stokes calculus is used for the analysis of photometric ellipsometry (to 

which it is otherwise well suited), conflicts, taking the form of unwanted minus signs, invari­

ably occur (see appendix AS.) 

The preferred convention of section 3 has the following advantages: The x axis is 

universally used as the azimuth reference. By defining x = E /Ex, the result is the natural 

x = tan (} when e: = 0. The relationship of ellipticity to the Jones vector is commonly given 

by eq. (3.8) in ellipsometry literature. Several monographs on polarized light [5,7 ,9] define 
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the Mueller matrix of a linear retarder in with the convention (see appendix 

A12). Finally, the relationship between the Jones and Mueller matrices (see appendix AlO) is 

also consistent with the literature [9,12] . 
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5. 

We have proposed nomenclature and sign conventions for parameters related to phase 

differences in order to reduce ambiguity in mathematical treatments of photometric ellipsome­

try and polarimetry. Although an author is always free to set forth and use his own conven­

tions, the aim of this proposal is to free him of that task if he so chooses. The mathematical 

conventions are summarized here: 

• Time and phase dependence (previously adopted [1,2]): 

E (z t) ""' Ref E ei(wt-2'ffz/ft.+ox>} 
x ' l xO ' 

(5.1) 

(5.2) 

These equations specify the form of the Jones vector 

(5.3) 

and the coherency matrix 

(5.4) 

• Complex polarization ratio: 

(5.5) 

• Ellipticity angle: 

sin 2<:: = (5.6) 

• Fourth Stokes parameter: 

{5.7) 

The conventions adhere to the traditional usage of calling a state of polarization right­

handed when the polarization ellipse is described in a clockwise sense. Since this happens 

whenever sin (oy-<\) > 0, the ellipticity and fourth Stokes parameter are positive for 

right-handed polarization. Finally, right-handed polarization states are represented by points 

on the northern half of the Poincare sphere. 



APPENDICES 

The appendices give expressions for various descriptions of polarization state according to 

the proposed conventions, and illustrate the use of the Mueller-Stokes calculus in photometric 

ellipsometry. Definitions and relations among various descriptions of polarization state, 

intensity and degree of polarization are given in appendices A1-A9. (The use of 1/; and 6. to 

describe the polarization state of light emerging from the system they characterize presumes 

45° linearly polarized incident light.) Appendix AlO takes the Jones matrix for a nondepolariz­

ing system and derives from it the matrices which transform the coherency and Stokes vectors. 

Mueller matrices for an isotropic reflecting surface and a linear retarder are given in All and 

A12, and the Mueller-Stokes calculus is applied to the analysis of a compensator-analyzer 

polarimeter in A13. 
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Components: 

(Al.l) 

.2) 

Vector: 

(A1.3) 

E xO• E yO• 8 x• and 8 Y may have a stochastic time dependence about an average value, as 

in the case of quasi-monochromatic waves or partial polarization. 



A2. of 

Two parameters that are of interest in photometric ellipsometry and polarimetry, but 

which are independent of handedness conventions are the intensity I and degree, of polariza­

tion p of a beam of light. These may be expressed in terms of the field component magni­

tudes, the Stokes parameters and the coherency matrix as follows: 

Defining relationships: 

Other formulas: 

1= + JYY = Tr (J), 

1 

P = [l~ 4 det(J) ]
2, 

(J) 

(A2.1) 

(A2.2) 

(A2.3) 

(A2.4) 

(A2.5) 

(A2.6) 

where det(J) and Tr(J) are respectively the determinant and trace of the coherency matrix J of 

the wave. 



Defining relationship: 

E: (A3.1) 

Other formulas: 

(A3.2) 

E= (A3.3) 

(A3.4) 

(A3.5) 

where EM is the ellipse major axis, R is the Cartesian coordinate rotation matrix given by eq. 

(A13.2) and 

tan 8 a "" tan e tan E: • (A3.7) 
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A4. 

Defining relationship: 

Other formulas: 

2 

1 0 

0 

0 

-1 0 

rll + p cos 2a p sin 2a 
J= L 

2 . 2 ii'J p sm 01 e 

I J =-
2 

1- p cos 21/J 

sin -i/:;, 
e 

p sin 21/J ei/:;,] 
1 + p cos 21/J , 

1 + p COS 2 fJ COS 2 E p ( sin 20 COS 2 E - i sin 2 E ) ] • 

sin 2fJ cos 2 E + i sin 2 E) 1 - p cos 2() cos 2 E: 

(A4.1) 

(A4.2) 

(A4.3) 

(A4.4) 

(A4.5) 

(A4.6) 

(A4.7) 

(A4.8) 



Defining relationship: 

Other formulas: 

(A5.2) 

(A5.3) 

(A5.4) 

S = {(Jxx + Jyy), (Jxx-lyy), (Jxy + Jyx), i(Jxy-Jyx)}, (A5.5) 

S = { (Jxx + Jyy), (Jxx-Jyy), 2Re(Jyx), 2Im(Jyx)}, (A5.6) 

So 1 0 0 ll 
sl 0 0 

-~J Jxy 
= (A5.7) 

Sz 0 1 Jyx 

s3 0 -i Jyy 

S = I {1, p cos 2a, p sin 2a coso, p sin 2a sin o}, (AS.8) 

S = I { 1, - p cos 21/;, p sin 21/; cos ll., - p sin 21/; sin ll.}, (A5.9) 

s = I { 1 ' p cos 2 E cos 2 e' p cos 2 € sin 20' p sin 2 € } • (AS.lO) 



relationship: 

Other formulas: 

j/j x = tan a e , 

.1. -it!. x ""' cot '~' e , 

tan 8 + i tan E 

1 - i tan e tan € 

-20-

sin 8 cos E + i sin E cos 8 

cos 8 sin e: - i sin e: sin e 

(A6.1) 

(A6.2) 

(A6.3) 

(A6.4) 

(A6.5) 

(A6.6) 

(A6.7) 



Defining relationship: 

Other formulas: 

tan -I I xI, 

8 = arg (x), 

cos 2a: "" cos 2€'. cos 28, 

tan o = tan 2e. I sin 28. 

(A7.1) 

(A7.2) 

(A7.3) 

(A7.4) 

(A7.5) 

(A7.6) 

(A7.7) 

(A7.8) 

(A7.9) 

(A7.10) 

(A7.11) 

(A7.12) 

(A7.13) 
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AS. X ref whei!ll X inc = 1; 

Defining relationship: 

tan 1/J (A8.1) 

Other formulas: 

tan 1/J = Exol Eyo• (A8.2) 

(A8.3) 

(A8.4) 

(A8.5) 

(A8.6) 

(A8.7) 

~! 1 o/ = tan --, 
I xl 

(A8.8) 

D. = - arg (x), (A8.9) 

(A8.10) 

D. ""' 360°-8, (A8.11) 

COS 21/J ""' ~ COS 2E COS 20, (A8.12) 

tan D. = ~ tan 2 E I sin 20. (A8.13) 



A9. AZJlmuth and elJipticity 

Defining relationships: 

Other formulas: 

sin 2.::: 

8 ""' azimuth of major axis, 

I tan E I = axial ratio, 

= i(Jxy-Jy) _ 21m(Jyx) 

p(Jxx +Jyy) - p(Jxx +Jyy)' 

tan 28 =. 2Re(x) 
2' 

1-lxl 

21m( sin 2.::: = ___ ..;.;;.;_.,.,.. 

1 + I X I 

tan 28 = tan 2a cos 8, 

sin 2E = sin 2a sin 8, 

tan 28 = - tan 21/; cos .::., 

sin 2 E = - sin 21/; sin .C.. 

(A9.1) 

(A9.2) 

(A9.3) 

(A9.4) 

(A9.5) 

(A9.6) 

(A9.7) 

(A9.8) 

(A9.9) 

(A9.10) 

(A9.11) 

(A9.12) 

(A9.13) 

(A9.14) 

(A9.15) 
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AlO. Transformation matrices for coherency and Stokes vectors 

Analogous to the relationship of the Stokes parameters to the Jones vector of totally 

polarized light is the relationship of the Mueller matrix to the Jones matrix of a nondepolariz­

optical system. We begin with the transformation matrix for the Jones vector (Jones 

matrix): 

Forming the expression J 1 = 
coherency vector is obtained: 

* ab"' aa 

Jxy 
I * ad"' ac 

""' * cb"' I 
Jyx ca 

Jyy 
I * ci' cc 

(AlO.l) 

) element by element, the transformation matrix for the 

ba * bb* 

be"' bi' Jxy 

* db* 
(A10.2) 

da Jyx 

de* dd* Jyy 

From the relationship between the coherency and Stokes vectors [see eqs. (3.17)-(3.20)]: 

S I 1 0 0 1 Jxx 
, 

0 
s , 1 0 0 ~1 Jxy 

I 

l 
(A10.3) ""' l 

Sz' 0 1 1 0 Jyx 
I 

s I 0 -i 0 Jyy 
I 

3 

Jxx 1 1 0 0 So 

Jxy 1 0 0 1 ~i st 
""'- (A10,4) 

Jyx 2 0 0 1 Sz 

Jyy 1 -1 0 0 s3 



we obtain 

S' = MS, (A10.5) 

where M is the real 4x4 Mueller matrix corresponding to the Jones matrix in eq. (AlO.l) and 

having elements given by 
* * $ $ M 00 = (aa + bb + ce + dd )/2 = (A + B + C + D)/2, (Al0.6) 

* * $ ,. 
(aa -bb + ec -dd )/2 = (A-B + C-D)/2, (A10.7) 

* " * * * *' M 02 = (ab + ba + ed + de )/2 = Re[ab + cd ], (A10.8) 

* * * .. * *' M 03 = - i(ab -ba + cd -de )/2 = Im[ab + cd ], (A10.9) 

* $ * * M 10 = (aa + bb -cc -dd )/2 = (A + B-C-D)/2, (A10.10) 

* * * * (aa -bb -cc + rid )/2 =(A-B-C+ D)/2, (AlO.ll) 

M12 = * $ * * (ab + ba -cd + de )/2 = Re[ab * -cd"'], (Al0.12) 

* * * * $: * M 13 = - i(ab -ba -cd +de )/2 = Im[ab -ed ], (A10.13) 

* ... ... $ * * M 20 = (ae + bd + ea + db )/2 = Re[ae + bd ], (A10.14) 

* $ * * (ac -bd -ca + db )/2 * * = Re[ae -bd ], (Al0.15) 

* * $ * * * M 22 = (ad +be +cb +da)/2 =Re[ad +be], (A10.16) 

* $ * * * * M 23 = - i(ad -be + eb -da )/2 = Im[ad -be], (A10.17) 

* * * * * * M30 = i(ae + bd -ea -db )/2 = -Im[ac + bd ], (A10.18) 

* * * * * * M:31 = i(ac -bd -ea -db )/2 = -Im[ac -bd], (A10.19) 

* * * * * * M 32 = i(ad +be -cb -da )/2 = -Im[ad +be ], (A10.20) 

* * * >!< * * M33 ""' (ad -be -eb + da )/2 = Re[ad -be ], (Al0.21) 

where 

* * * * A = aa , B = bb , C = ee , D = dd . (A10.22) 
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This result is consistent with that van de Hulst [ 1 An special case 

of interest in ellipsometry is the diagonal Jones matrix, for which b = c = 0. M then 

simplifies as follows: 

r(A+D)/2 0 

M~ rA-t/2 + 0 

* (A10.23) 
0 Re(ad ) 

* 0 ~Im(ad ) 



Jones matrix T: (x = p; y = s) 

(All.l) 

Using the definition 

(A11.2) 

T may be written 

'A [p 01]' T ref "" 's er s 0 (A11.3) 

and by eq. (Al0.23) the Mueller matrix for the reflecting surface is given by 

1 - cos 21/; 0 0 

,.z + ,.z - cos 21/; 1 0 0 
Mref""' 

p s (Al 1.4) 
2 0 0 sin 21/; cos ll sin 21/; sin 11 

0 0 - sin 21/; sin 11 sin 21/; cos 11 



Jones matrix T: (x = f, fast axis; y = s, slow axis; fi 1, fi 5 represent retardations associated 

with the e ~i(Z'ffz/A.) term in the electric field) 

in eq. 0.1) a"" Using the definition 

~Uic (T /T ) ~i(8 -81) 
P c ""' tan o/ c e = s I e s , 

T may be written 

1 

0 

and by eq. (A 10.23) the Mueller matrix for the retarder is given by 

r cos 

1

2•c 

cos 2o/ c 0 0 
2 2 1 0 0 

Mret = 
T[. + T3 

2 I o 0 sin 2>J; c cos {j c sin 2o/c sin Be 

L o 0 - sin 2o/ c sin oc sin 2o/ c cos o c 

For an ideal quarter wave retarder, 8c = 90° and o/ c = 45 ° (T5 = T1 = 
(Al2.4) then becomes 

1 0 0 

0 1 0 

0 0 0 

0 0 ~1 

(A12.1) 

(A12.2) 

(A12.3) 

(A12.4) 

Equation 

(A12.5) 

When the fast axis of the retarder has an azimuth C ,.o, the coordinate system rotation 

matrices [eq. (Al3.2)] are used to transform either of the above two expressions. The 

"'"''"'"'"""n"'t"' Mueller matrix is then given by R( ~ C) Mret R( C). 



As an illustration of the use of the proposed sign conventions, we derive the expression 

for the intensity transmitted by a linear C and a linear analyzer A in terms of the 

Stokes parameters of the incident radiation. Various conditions under which the Stokes 

parameters may be determined are then described. The Stokes vector S' of the transmitted 

light in the analyzer reference frame is given by 

C) S, (A13.1) 

where C and A are respectively the azimuths of the retarder and analyzer, R is the coordinate 

system rotation matrix 

1 0 0 0 

0 cos 29 sin 29 0 
R(9) ""' 

0 - sin 29 cos 20 0 
(A13.2) 

0 0 0 1 

and Mana! is the Mueller matrix of a linear analyzer: 

1 1 0 0 

1 1 1 0 0 
M ~--ana -

2
. 

0 0 0 0 
(A13.3) 

0 0 0 0 

combining eq. (Al2.4) with eqs. (Al3.1)-(A13.3), the detected intensity s 0' is given in 

terms of the input Stokes parameters by [25] 

4S0'1<ij. + r;) = S0[s cos (2C- 2A) + 1] 

+ S 1 (( cos ( 4 C - 2A) + s cos 2 C + (1 - f) cos 2A] 

+ S2(f sin (4C - 2A) + s sin 2C + (1 -f) sin 2A] (Al3.4) 

+ S3[- r sin (2C- 2A)], 
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where 

s "" cos 2~/~e = o, (A13.5) 

p = sin 21/;e cos lie : 0, (A13.6) 

r = sin 21/;e sin lie = 1, (A13.7) 

f""' (1 ~ p)/2 = 0.5. (Al3.8) 

The approximations above are for an ideal quarter-wave plate. In that case, using 

eq. (Al2.5), and setting T = 1 and A = 0, eq. (A13.4) becomes 

(Al3.9) 

This equation shows that all four Stokes parameters may be determined from Fourier analysis 

of the intensity of light transmitted by a rotating compensator followed by a fixed linear 

analyzer [10b,25]. 

If A and 8e are variable, l/le = 45° and we fix C ""'0, eq. (A13.4) becomes 

(A13.10) 

This equation shows that one may use a fixed compensator with a rotating analyzer to 

determine two of the Stokes parameters directly plus a linear combination of the remaining two 

parameters with a single measurement [10]. 

If C is fixed with respect to A so that (A ~ C) = 45 °, 1/; e = 45 ° and 8 e is modulated, 

eq. (A13.4) becomes 

2S0'.""' S 0 + 1 cos 2A + sin 2A] cos 8e + (A13.11) 

From this we see that by using phase modulation, obtained for example by piezo-birefringence, 

[26] one may again determine three of the four Stokes parameters with a single measure­

ment. In either of the last two cases, a second measurement can be made to determine the 

remaining Stokes parameter. 
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Fig. 1. Right~handed elliptical polarization. The instantaneous locus of the tip of the 

electric field vector forms a right-handed helix in space. As the helix propagates in the 

positive z direction, the point of intersection of the helix with a transverse plane (e.g. z ""' 0) 

traces an ellipse in a clockwise sense as the viewer faces the source. 

Fig. 2. Definition of azimuth e and ellipticity ,:;: . For right-handed polarization (as 

shown), both E and S 3 are positive. 

Fig. 3. Relationship of the Poincare sphere to the Stokes parameters, azimuth 

e and ellipticity E of a polarization state represented by the point P. Azimuth increases to the 

east from a zero value at the meridian defined by S 2 ,.,. 0 and S 1 > 0. Ellipticity increases to 

the north from a zero value at the equator. The north pole represents right-handed circular 

polarization. The S 1, and s3 axes form a right-handed Cartesian coordinate system. 

Fig. 4. Relationship of the Poincare sphere to the ellipsometric parameters 1/;, kl and the 

auxiliary angles a, 8 (see text) of a polarization state represented by the point P. The angles 

2a and 21/; are measured to the line connecting P and the origin respectively from the positive 

and negative S 1 axes and are complementary. The angles kl and o give the inclination of the 

plane of the point P and the S 1 axis to the positive S2 half of the equatorial plane. They are 

measured clockwise and counterclockwise respectively when viewed as shown. Their sum is 

360°. 

Fig. 5. The relationship of the unit-radius Poincare sphere to the Cartesian complex 

polarization plane (x plane.) The origin of the plane and the center of the sphere coincide, and 

the projection is made from the intersection of the negative S 1 axis and the equator. The 

projections of the real and imaginary axes of the plane respectively onto the equator and the 

0° and 180° meridians of the sphere are shown. 

6. The Poincare sphere with the previously used conventions for azimuth 

8 and ellipticity angle y. The north pole represents left-handed circular polarization. e 
increases to the east, and y (positive for left-handed polarizaion) increases to the north. 
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